p-adic modular forms of non-integral weight over Shimura curves
نویسندگان
چکیده
منابع مشابه
p - adic Modular Forms over Shimura Curves over
In this thesis, we set up the basic theory of p-adic modular forms over Shimura curves over Q, parallel to the classical case over modular curves. We define and study the structure of the spaces of p-adic modular forms with respect to certain quaternion algebras over Q. We study the relation of these modular forms with classical quaternionic modular forms. We prove a canonical subgroup theorem ...
متن کاملp-adic interpolation of half-integral weight modular forms
The p-adic interpolation of modular forms on congruence subgroups of SL2(Z) has been succesfully used in the past to interpolate values of L-series. In [12], Serre interpolated the values at negative integers of the ζ-series of a totally real number field (in fact of L-series of powers of the Teichmuller character) by interpolating Eisenstein series, which are holomorphic modular forms, and loo...
متن کاملP -adic Family of Half-integral Weight Modular Forms via Overconvergent Shintani Lifting
The classical Shintani map (see [Shn]) is the Hecke-equivariant map from the space of cusp forms of integral weight to the space of cusp forms of half-integral weight. In this paper, we will construct a Hecke-equivariant overconvergent Shintani lifting which interpolates the classical Shintani lifting p-adically, following the idea of G. Stevens in [St1]. In consequence, we get a formal q-expan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Compositio Mathematica
سال: 2012
ISSN: 0010-437X,1570-5846
DOI: 10.1112/s0010437x12000449